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Combined action of different mechanisms of convective instability in multilayer systems

Alexander A. Nepomnyashchy and Ilya B. Simanovskii
Department of Mathematics, Technion–Israel Institute of Technology, Haifa 32000, Israel

~Received 26 October 1998!

The nonlinear regimes of convection in a system of three immiscible viscous fluids are investigated by the
finite-difference method. We study new phenomena caused by direct and indirect interaction of thermocapil-
lary and buoyancy~Rayleigh and anticonvective! instability mechanisms. Two variants of heating—from
below and from above—are considered. The interfaces are assumed to be flat. We focus on nonlinear evolution
of steady and oscillatory motions and selection of stable convective structures depending on the parameters of
systems. The influence of the lateral boundary conditions is also investigated. A classification of different
variants of interaction between Rayleigh and thermocapillary instability mechanisms is presented, and several
typical examples are studied. Specifically, we considered six different configurations where the Rayleigh
convection arises mainly in a definite layer, and the thermocapillary convection appears mainly near the
definite interface. Also, the case where both interfaces are active and alternatively play a dominant role is
investigated. Some configurations of interaction between anticonvective and thermocapillary instability mecha-
nisms are considered.@S1063-651X~99!12205-0#

PACS number~s!: 47.27.2i, 47.20.2k
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I. INTRODUCTION

The phenomenon of Rayleigh-Be´nard convection in a
horizontal fluid layer between rigid boundaries is caus
only by the buoyancy effect. Convection in the presence
an interfaceis characterized by several additional instabil
mechanisms. The most well-known interfacial physical
fect that may cause a convective instability is thethermocap-
illary effectwhich can generate stationary@1# and oscillatory
motions @2–5#. There exists another instability mechanis
which appears only in systems with an interface. Althou
caused by buoyancy, it is nevertheless completely differ
from the Rayleigh instability mechanism. This kind of inst
bility, which is obtained by heatingfrom above, was discov-
ered in@6# and explained from a physical point of view in@7#
~see also@8#!. This phenomenon, connected essentially w
the difference of physical parameters of fluids on both si
of the interface, is called ‘‘anticonvection.’’

In a real situation, various instability mechanisms may
simultaneously. The buoyancy instability mechanis
~caused by avolumeeffect! are more important for relatively
thick layers, while thermocapillarity~interfacial effect! plays
the dominant role in the case of thin layers or under mic
gravity conditions. The combined action of different instab
ity mechanisms may lead to some qualitatively new effe
For instance, competition between two mechanisms of
tionary instability can produce oscillations@9#.

Recently, some new technologies appeared that are b
on complicated multilayer systems, for example, the liq
encapsulation crystal growth technique@10# used in space
laboratory missions, which enables the growing crystals
attain a high quality by putting the melt between the flu
layers. The simultaneous interaction of many interfaces w
their bulk phases and with each other can lead to a m
more complex dynamics and unexpected effects. At pres
the combined action of the thermocapillary and buoyan
mechanisms of convection were considered only for
three-layer systems air/silicone oil 50 cs/fluorinert FC70 a
PRE 591063-651X/99/59~6!/6672~15!/$15.00
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air/silicone oil 10 cs/fluorinert FC70~see@11–13#!. For these
systems, the thermocapillary and buoyancy forces act in
same direction, and the instability is always stationary n
the threshold of the onset of convection.

In the present paper we consider the combined action
several mechanisms of instability for three-layer syste
with different physical properties. The paper is organized
follows. In Sec. II we describe the formulation of the pro
lem and the numerical method. Section III is devoted to
consideration of the combined action of Rayleigh and th
mocapillary instability mechanisms. In Sec. IV we study t
interaction between thermocapillary convection and antic
vection. Section V contains some concluding remarks.

II. FORMULATION OF THE PROBLEM AND
NUMERICAL METHOD

Let the rectangular cavity with rigid boundaries be fille
by three immiscible viscous fluids~see Fig. 1!. The plates are
kept at different constant temperatures~the total temperature
drop isQ!. It is assumed that surface tension coefficients
the upper and lower interfacess and s* decrease linearly
with temperature:s5s02aT, s* 5s0* 2a* T. In the
present paper we do not take into account deformation
the interfaces. Thus, we disregard the long-wavelength
formational instability mode@14,15# which may be observed
only in very thin layers with distant lateral boundaries@16#.
The linear stability analysis performed for three-layer s
tems with deformable interfaces@17# shows that the defor-
mational instabilities do not appear in the case of mode
layer lengths. The assumption used does not contradict
results of space experiments@10#. Indices 1 and 3 are relate
to the exterior layers, and index 2 is related to the mid
one.

Let us use the following notations:

n* 5n3 /n1 , n5n3 /n2 , h* 5h3 /h1 ,
6672 ©1999 The American Physical Society
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h5h3 /h2 , k* 5k3 /k1 , k5k3 /k2 ,

x* 5x3 /x1 , x5x3 /x2 , b* 5b3 /b1 ,

b5b3 /b2 , ā5a* /a,

a* 5a1 /a3 , a5a2 /a3 , L5 l /a3 .

Heren i , h i , k i , x i , b i , andai are, respectively, kinemati
and dynamic viscosities, heat conductivity, thermal diffus
ity, heat expansion coefficient, and thickness of thei th layer
( i 51,2,3). As the units of length, time, velocity, pressu
and temperature we usea3 , a3

2/n3 , n3 /a3 , r3n3
2/a3

2, andQ.
Introducing the stream functionc and the vorticityw we

can write the dimensionless equations in the following for

]w i

]t
1

]c i

]y

]w i

]x
2

]c i

]x

]w i

]y
5diDw i1biG

]Ti

]x
,

Dc i52w i ,

]Ti

]t
1

]c i

]y

]Ti

]x
2

]c i

]x

]Ti

]y
5

ci

P
DTi ~ i 51,2,3!. ~2.1!

Here, d35b35c351, d151/n* , b151/b* , c151/x* ,
d251/n, b251/b, c251/x, G5gb3Qa3

3/n3
2 is the Grashof

number, andP5n3 /x3 is the Prandtl number for the liquid
in layer 3.

At the interfaces normal components of velocity van
and the continuity conditions for tangential components
velocity and viscous stresses, temperatures, and heat fl
also apply: y50:

c25c350,
]c2

]y
5

]c3

]y
, T25T3 ,

~2.2!
1

k

]T2

]y
5

]T3

]y
, h

]2c3

]y2 5
]2c2

]y2 1Mr
]T3

]x
,

y52a:

FIG. 1. The system of fluids.
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c15c250,
]c1

]y
5

]c2

]y
, T15T2

~2.3!
1

k*

]T1

]y
5

1

k

]T2

]y
, h* h21

]2c2

]y2 5
]2c1

]y2 1Mr *
]T2

]x
.

Here Mr 5hM /P, Mr * 5h* āM /P, andM5aQa3 /h3x3
is the Marangoni number. On the horizontal solid plates
boundary conditions have the formy51:

c35
]c3

]y
50, T350, ~2.4!

y52a2a* :

c15
]c1

]y
50, T15s, ~2.5!

s51 for heating from below,s521 for heating from above.
We consider two kinds of boundary conditions on vertic

walls.
~A! Well-conducting boundaries:x52L/2,L/2:

c i5
]c i

]x
50, Ti52Aiy1Bi , i 51,2,3. ~2.6a!

Here

A15sk* ~11ka1k* a* !21, A25sk~11ka1k* a* !21,

A35s~11ka1k* a* !21, B15s
12~k2k* !a

~11ka1k* a* !
,

B25B35s~11ka1k* a* !21.

~B! Insulated boundaries:x52L/2,L/2:

c i5
]c i

]x
50,

]Ti

]x
50, i 51,2,3. ~2.6b!

The boundary value problem~2.1!–~2.6! contains 17 in-
dependent nondimensional parameters. The parametric
vestigation of this problem seems to be impossible. Beca
of this we shall concentrate on some particular systems
fluids demonstrating various characteristic phenomena.

The boundary value problem~2.1!–~2.6! was solved by
the finite-difference method. Equations~2.1! were approxi-
mated on a uniform mesh using a second-order approxi
tion for the spatial coordinates. The calculations were sta
with initial conditions corresponding to equilibrium fields o
temperature and localized vorticity of different sign in se
eral points~see Fig. 2!. The nonlinear equations were solve
using the explicit scheme, as a rule on a rectangular unifo
28384 mesh. We checked up the results also on 42384 and
283126 meshes. The time step was calculated by the
mula

Dt5
@min~Dx,Dy!#2@min~1,n,x,n* ,x* !#

2@21maxuc i~x,y!u#
.
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The Poisson equations were solved by the iterative Liebm
successive over-relaxation method on each time step: the
curacy of the solution was fixed (1024 for steady solutions
and 1025 for oscillations!. The Kuskova and Chudov formu
las @18# providing the second-order accuracy were used
approximation of the vorticity on the solid boundaries. F
example, on the boundaryx50

w i~0,y!5
c i~2Dx,y!28c i~Dx,y!

2~Dx!2 .

At the interfaces the expressions for the vorticities at
exterior layers are approximated with second-order accu
for the spatial coordinates and have a form

FIG. 2. Types of initial conditions for vorticity.
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w3~x,0!52
2@c2~x,2Dy!1c3~x,Dy!#

~Dy!2~11h!

2Mr
1

11h

]T3

]x
~x,0!, ~2.7!

w2~x,0!5hw3~x,0!1Mr
]T3

]x
~x,0!, ~2.8!

w2~x,2a!52
2@c1~x,2a2Dy!1c2~x,2a1Dy!#

~Dy!2~11h* h21!

2Mr *
1

11h* h21

]T2

]x
~x,2a!, ~2.9!

w1~x,2a!5h* h21w2~x,2a!1Mr *
]T2

]x
~x,2a!.

~2.10!

Here Dx, Dy are the mesh sizes for the correspondi
coordinates. The temperatures on the interfaces were ca
lated by the second-order approximation formulas:
T2~x,0!5T3~x,0!5
@4T2~x,2Dy!2T2~x22Dy!#1k@4T3~x,Dy!2T3~x,22Dy!#

3~11k!
, ~2.11!

T2~x,2a!5T1~x,2a!5
k* @4T2~x,2a1Dy!2T2~x,2a12Dy!#1k@4T1~x,2a2Dy!2T1~x,2a22Dy!#

3~k1k* !
. ~2.12!
n-
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The same code was formerly used for calculation of conv
tive flows in three-layer systems~see@11,19#!. It turned out
to be efficient for calculation of both stationary and oscil
tory convection regimes. A good agreement between lin
and nonlinear theories was observed.

Nevertheless, we performed some additional tests.
typical test results obtained for the system described in S
III A ( M527 500, G50) are shown in Tables I and II
These tables present the dependences of the oscillation
riod t and the maximal value of stream function (c3)max in
the upper layer on the mesh size~Table I! and the time step
~Table II!. Relative changes of stream function amplitud
for all mesh sizes do not exceed 3%. The maximal rela
changes~up to 10%! were observed for the vorticity near th
corner points where the vorticity field is not continuous.

TABLE I.

Mesh sizes t (c3)max

28384 0.284 5.679
42384 0.284 5.724
283126 0.284 5.707
c-

-
ar

e
c.

pe-

s
e

III. COMBINED ACTION OF RAYLEIGH AND
THERMOCAPILLARY MECHANISMS OF CONVECTION

First of all, we shall discuss the specific features of co
vection in three-layer systems in comparison with one-la
and two-layer systems.

In one-layer systems, the Marangoni convection in
absence of the surface deformation is always stationary
two-layer systems, the Marangoni oscillations may arise@2#,
but only in some specific cases@20#. In three-layer systems
the interaction of the interfaces may lead to the appeara
of new mechanisms of oscillatory instability. Formally, th
critical Marangoni numbers for the stationary convection in
three-layer system satisfy a quadratic equation@19,21#,
which does not always have real solutions~in the case of
one-layer and two-layer systems, the Marangoni numbe

TABLE II.

Time step t (c3)max

Dt 0.284 5.670
Dt/2 0.284 5.661
Dt/4 0.284 5.656
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calculated from a linear equation!. In many cases, the disap
pearance of the stationary instability is a sign of an osci
tory instability. That is why the oscillatory instability in
three-layer systems is much more widespread than in t
layer ones@13,19,21,22#.

There is another situation which may appear only
three-layer systems in the presence of both buoyancy
thermocapillary instability mechanisms. Each layer is ch
acterized by its own local value of the Rayleigh number, t
is why the buoyancy convection instability is realized us
ally only in one of the layers. Similarly, the thermocapilla
instability may be produced mainly by one of the interfac
In the case where the thermocapillary convection and bu
ancy convection are generated mainly in different flui
some kind of ‘‘indirect’’ interaction of instability mecha
nisms is observed. Several different situations are brou
together in Table III. In the rest of Sec. III we shall consid
phenomena corresponding to the listed types of interac
between Rayleigh and Marangoni convection mechanism

A. System 1

We start with the simplest case, where the buoyancy c
vection arises mainly in the middle layer, the thermocapilla
convection appears mainly near the upper interface~caseB
in Table III!, and only steady motions are realized in t
system.

Let us consider the system air/silicone oil 10 cs/fluorin
FC70, which is characterized by the following set of para
eters @13#: h* 56.831024, n* 51.12, k* 50.375, x*
5643, b* 53.6, h5231023, n51.57, k50.196, x
5228.4,b53.27, ā50.5, P50.707 ~system 1!. The thick-
nesses of the layers are assumed to be equal:a5a* 51, L
52.5, s51 ~heating from below!. Both types of boundary
conditions~2.6a! and ~2.6b! are used.

First, let us consider the thermocapillary convection (M
Þ0, G50). The threshold valuesMc for both heat-
conductive and heat-insulated lateral boundary conditi
turned out to be rather close (Mc.25 000). The motion
takes place mainly near the upper interface.

One can expect that two kinds of thermocapillary motio
are possible. The case where the temperature near the
cal walls is lower than that near the symmetry planex50
will be defined as the case of ‘‘cold corners.’’ The oppos
situation will be called the case of ‘‘hot corners.’’

As the initial state, we used the temperature field cor
sponding to the mechanical equilibrium state which is ch
acterized by a temperature gradient, directed perpendicu
to the interfaces, and two kinds of vorticity fields charact
ized by the two-vortex structure in each layer@see Figs. 2~a!
and 2~b!#. For the first kind of initial state@type ~a!# a ‘‘hot

TABLE III.

Rayleigh convection

Upper layer Middle layer Lower laye

Marangoni
convection

Upper
interface

A B C

Lower
interface

D E F
-

o-

nd
r-
t
-
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y-
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corner’’ motion appears at small values oft. The typical
dependence of the maximal value of the stream funct
(c i)max on t ( i 51,2,3) is shown in Fig. 3@boundary condi-
tions ~2.6a!#. One can see a ‘‘plateau’’ in the stream functio
for all the layers in the region 15,t,30 corresponding to a
transient state, containing vortices with different signs@see
Fig. 4~a!#. Small vortices corresponding to the ‘‘cold co
ner’’ motion appear spontaneously near the vertical wa
Finally, the corner vortices replace the structure produced
the initial conditions, and the system evolves to the sa
steady state as for the second kind of initial conditions. T
spatial structure of this steady motion which does not dep
on the initial state corresponds to the ‘‘cold corner’’ ca
@see Fig. 4~b!# and is almost insensitive to the growth of th
Marangoni number.

In the case of heat-insulated lateral boundary conditi
~2.6b!, the evolution of the structure from the initial cond
tions ~a! and~b!, as well as the final structure of the statio
ary thermocapillary motion, are similar to those obtained
the case~2.6a!. The intensity of the motion in the case~2.6b!
is somewhat lower than in the case~2.6a! ~see Fig. 5!. In
both cases, for relatively small values ofM the maximal
value of the stream function is achieved in the upper lay
while for large values ofM it is achieved in the middle layer

Let us remember that in the one-layer case@23# the flow
along the surface towards the cold wall compresses the t
mal gradient, thereby enhancing the flow. That is why
motion in the case of a cold corner turns out to be essenti
more intensive than in the case of a hot corner. For an
ternal horizontal temperature gradient on the surface,
problem was investigated in detail by Canright@24# ~see also
@25#!. We consider here the case where the external temp
ture gradient is directed perpendicularly to the interfac
The temperature gradient along the interface is nonzero o
because of the convective motion. One could assume
both cases of the ‘‘cold corner’’ and the ‘‘hot corner’’ ma
be observed. However, because of the positive feedback
thermocapillary motion in the case of a ‘‘cold corner,’’ th
motion corresponding to the latter case turns out to be p
ferred. Let us note that in the case of well-conducting ve
cal boundaries, the vorticity is not continuous in the corn
points @26#.

FIG. 3. Dependence of (c i)max ( i 51,2,3) ont in the case of
M540 000.
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In the case of the buoyancy convection (GÞ0, M50),
the motion appears mainly in the two lower layers@see Fig.
6~a!#. Let us note that the direction of the motion in th
middle layer is the same in both cases of buoyancy and t
mocapillary convection. That is why in the caseGÞ0, M
Þ0 the intensity of convection in the middle layer is larg
under the action of both effects than in the absence of on
them @see Fig. 6~b!#. The situation is similar to that consid
ered by Nield@27# for a one-layer system.

Thus, for system 1 the combined action of both mec
nisms of instability, as well as the change of the late
boundary conditions, do not produce qualitatively new flo
structures.

For the system with the given physical properties it
possible to obtain a situation when the thermogravitatio
convection is realized mainly in the upper layer~caseA in
Table III!. For this purpose we change the ratios of lay
thicknesses:a5a* 50.4; it means that the thickness of th
upper layer is the largest one. Boundary conditions~2.6b! are
used. In this case the direction of the vortices’ rotation n
the upper interface is the same both for buoyancy and th
mocapillary convection and thermocapillary effect leads
the stabilization of the stationary instability mainly in th
upper and middle layers. In the upper layer the motion ha
two-story structure@see Fig. 6~c!#.

B. System 2

In the present subsection, we shall concentrate on a qu
tatively new situation, where both instability mechanisms

FIG. 4. ~a! Transient state (M540 000); ~b! streamlines of the
steady motion forM540 000.
r-
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in different layers. Such an ‘‘indirect’’ interaction of insta
bility mechanisms is possible only in three-layer systems

Let us consider the system air/ethylene glycol/fluorin
FC75 which is characterized by the following set of para
eters @28#: h* 50.013, n* 518.767, k* 50.401, x*
5606.414, b* 52.62, h50.001, n50.974, k50.098, x
5215.1,b55.9, P50.72, ā50.08. Let us takea5a* 51,
L52.5, s51. We use boundary conditions~2.6a!. The dia-
gram of structures is shown in Fig. 7. The pure buoyan
convection (GÞ0, M50) was considered formerly by Si
manovskii@29#. We can introduce the Rayleigh numbers d
termined by the parameters of each layer:

Ri5
gb iAiai

4

n ix i
, i 51,2,3.

In our case the ‘‘local’’ Rayleigh numbers differ consid
erably:

FIG. 5. Amplitude curves (c i)max(M) ( i 51,2,3) for ~a! well-
conducting and~b! heat-insulated lateral boundary conditions. T
number of the line coincides with the number of the layer.
FIG. 6. Streamlines in the case of heat-insulated boundary conditions:~a! G51750, M50; a5a* 51; ~b! G51750, M512 000; a
5a* 51; ~c! G5500, M55000; a5a* 50.4.
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R2

R3
53.5,

R1

R3
51.73103.

Because of this, the intensive convection motion arises o
in the lower layer (Gc.2.5); in the other layers weak in
duced motions exist~see Fig. 8!. It is interesting that the
structure of the motion changes with the increase inG. For
relatively smallG @see Fig. 8~a!# the fluid goes down in the
middle of layer 1~structure I!. WhenG increases, the latera
vortices become stronger and suppress the central vort
so that structure I is smoothly transformed into a steady fo
vortex structure II@see Fig. 8~b!#. For largeG @see Fig. 8~c!#
the fluid goes up in the middle of layer 1~structure III!.
There is a hysteretic transition between structures II and
in the interval of the Grashof numbers 30,G,80 the sta-
bility regions of these structures are overlapped. For all
configurations, the symmetry properties

c i~x,y!52c i~2x,y!, Ti~x,y!5Ti~2x,y!, i 51,2,3
~3.1!

are not violated. It is known~see@20,30,31#! that the bifur-
cation of steady finite-amplitude motions with the symme
~3.1! is two sided~the motions with different direction o

FIG. 7. Diagram of strucutres~j—structureA, s—structure
B,*—structureC!.
ly

es,
r-

I:

e

rotation are not equivalent; the preferred motion appears
subcritical way!. These details cannot be seen in the scale
the graph.

Let us consider now the case of the pure thermocapill
convection (G50, MÞ0; see Fig. 7!. The Marangoni con-
vection is generated mainly in the second and the third lay
@see Fig. 9~a!#. In the third layer the fluid goes down in th
middle part of the layer, in the second layer it goes up, and
the first layer it goes down@the latter motion is invisible in
Fig. 9~a!#.

Now we shall discuss the case of the combined action
buoyancy and thermocapillary mechanisms of convect
(GÞ0, MÞ0; see Fig. 7!. The considered system belongs
type C of Table III. Because the thermocapillary convectio
in the second and the third layers induces a descending
in the middle of the first layer, it supports structureA against
other possible structures. For nonzero values ofM one can
observe in the lower layer structureA @Fig. 9~b!# instead of
both structuresB andC. If M is nonzero but not sufficiently
large, the structureC survives@see Fig. 9~c!#. In the latter
case, some small vortices appear, separating mainly b
ancy convection motion in the lower layer and mainly the
mocapillary motions in the middle layer and in the upp
layer.

The considered example shows that the structure of
buoyancy convection in a certain layer may be influenced
thermocapillary convection appearing in some other fl
layers.

Let us change the ratio of layer thicknesses:a51; a*
54; it means that the lower layer has the largest thickne
The thermocapillary convection appears mainly near the
per interface@see Fig. 10~a!#. As for the given caseR1.R2
.R3, the buoyancy convection is realized mainly in th
lower layer. Let us note that nonlinear oscillatory convecti
is possible in that case@see Figs. 10~b! and 10~c!#. The os-
cillatory motion retains in the system under the combin
action of both mechanisms of instability (GÞ0, MÞ0). The
maximum values of stream function modulus in all the lay
as a function of time are presented in Fig. 11. The evolut
of the streamline patterns during one-half of the period
shown in Figs. 12~a!–12~d!. The most intensive motion o
the gravitational nature takes place in the lower layer, wh
FIG. 8. Streamlines forM50; ~a! G520, ~b! G575, ~c! G5100.
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FIG. 9. Streamlines for the system air/ethylene glycol/fluorinert FC75 (a5a* 51; ā50.08): ~a! G50, M550 000; ~b! G575, M
525 000; ~c! G5100, M525 000.
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during one-half of the period the vortices change their sig
The thermocapillary motion in the upper and middle layers
weakly influenced by the buoyancy convection in the low
layer.

Now let us consider a case when the thickness of
middle layer is larger than the thickness of the exterior l
ers: a52.4, a* 50.4. The ratios of local Rayleigh numbe
are

R2

R3
5115.5,

R1

R3
544.6.

In this situation the intensive buoyancy convection (GÞ0,
M50) arises mainly in the middle layer@see Fig. 13~a!#.
The competition between the buoyancy convection and
thermocapillary effect~type B in Table III! intensifies the
stationary motion@see Fig. 13~b!#. One can see that th
maximum of the motion’s intensity takes place in the midd
layer, close to the upper interface.

Let us note that the increase of the ratio of the therm
coefficients of the surface tensionā ~for example, by the
addition of the surface-active agents on the interfaces! leads
to the change of the ‘‘activities’’ of the interfaces. We sh
take a5a* 51. For G50, MÞ0, if 0.08,ā,1 the upper
interface plays an active role in the generation of convect

FIG. 10. Streamlines (a51, a* 54, ā50.08) for ~a! steady
thermocapillary convection (G50, M560 000);~b!, ~c! oscillatory
buoyancy convection (G55, M50).
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if 1 ,ā,4.5 thermocapillary convection is generated
both upper and lower interfaces, and if 4.5,ā,12.5 the
motion takes place mainly near the lower interface. In
last case inclusion of buoyancy convection (GÞ0) leads to
type F in Table III.

With the increase inā the situation changes essential
also for the layers with unequal thicknesses. Let us taka
52.4, a* 50.4, ā512.5. In this case the thermocapillar
convection appears mainly near the lower interface, and
was discussed above, the buoyancy convection arises m
in the middle layer. It means that the system belongs to t
E in Table III. The combined action of buoyancy and the
mocapillary mechanisms (GÞ0, MÞ0) leads to the estab
lishment of the steady motion mainly in the lower an

FIG. 11. Dependence ofu(c i)umax ( i 51,2,3) on t in the case
G55, M560 000;a51, a* 54, ā50.08.
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FIG. 12. Streamlines~a!–~d! for the periodic oscillatory motion for the half of the periodG55, M560 000;a51, a* 54; ā50.08.
th
e
n
ar
b

fo
e

e
on
iv
p

at

e
-

-
ual
e-

le
ds

w

on-
n
er,

o
-
in-
xi-
dle
ure
yer

c-
the
in
middle layers close to the lower interface@see Fig. 13~c!#.
Let us consider now the case when the thickness of

upper layer is larger than the thicknesses of the other lay
a50.333,a* 50.133. Forā512.5 the buoyancy convectio
is realized mainly in the upper layer and the thermocapill
convection appears mainly near the lower interface. In Ta
III such a situation is classified as typeD. The combined
action of both mechanisms of instability (GÞ0, MÞ0)
leads to the arising of the steady motion in the system. As
‘‘pure’’ thermogravitational convection, the most intensiv
motion takes place mainly in the upper layer.

C. Oscillatory convection regimes due to the interaction
of interfaces

In the previous example, only one of the interfaces play
an active role in the generation of the thermocapillary c
vection. To investigate the interaction between two act
interfaces, we consider the model system, where all the
rameters of fluids are equal except dynamic and kinem
viscosities:k5k* 5x5x* 5a5a* 5ā51, h5n50.5, h*
5n* 50.25. It means that the lowest layer has the high
viscosity. We chooseP51, L52.5. We use boundary con
ditions ~2.6a!.

The general diagram of regimes is shown in Fig. 14.
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Let G50. From results of@19#, we expect that thermocap
illary oscillations may arise in the system, because of eq
values of temperature diffusivities. It turns out that the m
chanical equilibrium state is stable ifM,M0512 700 ~see
Fig. 14!. As M.M0 , the equilibrium state becomes unstab
with respect to oscillatory disturbances. This instability lea
to temporally periodic oscillations~regime 1! which appear
in a supercritical way. Let us describe qualitatively the flo
evolution during the period of oscillations~see Fig. 15!. We
start from the state where an intensive thermocapillary c
vection corresponding to a ‘‘cold corner’’ configuratio
takes place mainly in the third layer and in the second lay
while the fluid in the first layer is almost stagnant@Fig.
15~a!#. The fluid motion in the second layer induces tw
weak vortices in the first layer@Fig. 15~b!#. Because the as
cending flow in the middle of the second layer is more
tensive than the descending flow in the first layer, a ma
mum of the temperature distribution appears in the mid
point of the lower interface. As the result, the temperat
field generates a new four-vortex structure in the first la
and in the second layer@see Fig. 15~c!# which ousts the
former structure. An intensive motion developing in the se
ond layer induces a motion in the opposite direction in
third layer@see Fig. 15~d!# and diminishes the temperature
FIG. 13. Streamlines for the ratios of layer thicknessesa52.4, a* 50.4: ~a! G5240, M50; ā50.08; ~b! G5240, M512 000; ā
50.08; ~c! G520, M55000; ā512.5.
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the middle of the lower interface. Because of the latter p
nomenon, the motion in the first layer slows down@Fig.
15~e!# and changes its direction@Fig. 15~f!#. A ‘‘two-story’’
structure appears in the second layer. The new growing
tices in the second layer suppress the upper pair of vort
@Fig. 15~g!#, enhance the temperature in the middle of t
upper interface, and diminish the temperature in the mid
of the lower interface. That is why the flow in the first lay
is suppressed@Fig. 15~h!#, and finally the structure returns t
the configuration of Fig. 15~a!.

FIG. 14. The diagram of regimes~n—equilibrium, j—steady
state,s—oscillations!. The dashed lines separate the regions
different regimes.
-
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e
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Thus, the main elements of patterns are mutually intera
ing four-vortex structures generated by temperature inho
geneities on the interfaces that were analyzed formerly
@11,19#.

To characterize the intensity and the structure of motio
we shall introduce the following integral characteristics:

Sl~ t !5E
2L/2

0

dxE
0

1

dy c3~x,y,t !,

Sr~ t !5E
0

L/2

dxE
0

1

dy c3~x,y,t !,

S15Sl1Sr , S25Sl2Sr . ~3.2!

Near the threshold the oscillations have a rather simple,
most sinusoidal form~see Fig. 16, line 1!, but the mean value
of Sl(t) is different from zero. The fields of stream functio
and temperature satisfy the symmetry conditions~3.1!. For
the symmetric motion~3.1!, Sr(t)52Sl(t); thus,S2 oscil-
lates,S150. With the increase in the Marangoni numbe
the amplitude of oscillations grows~see Fig. 16, line 2!, and
their periodt decreases~see Fig. 17, line 1!.

Let us note that the effect of the ‘‘cold corner’’ is obser
able also in the case of the oscillatory motion. In Fig. 18
time evolution of the vorticity on the interfaces in the poin
(x,y)5(L/22Dx,0), (x,y)5(L/22Dx,2a), where Dx is
the mesh size for the horizontal coordinate, is presented.
calculations were performed on the mesh 42384. One can
see that the sign of the vorticity is positive during almost t

f

ing
FIG. 15. Streamlines~a!–~h! for the periodic oscillatory motion atM527 500 for the whole period. Time interval between neighbor
pictures ist/8.
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whole period of oscillations. This sign of the vorticity corr
sponds to a ‘‘cold corner’’ motion. Let us note that the se
ond harmonics caused by nonlinearity are much stronge
the oscillations of the vorticity in the corner than in the o
cillations of the integral characteristics.

As M.30 500, the symmetric oscillatory periodic motio
becomes unstable with respect to disturbances violating
symmetry conditions~3.1!. Now both variablesS2 and S1

are nonzero and oscillate. Generally, we could expect
the oscillations ofS1 would arise with a frequency incom
mensurable to the oscillation frequency ofS2 . However, it
turns out that a synchronization takes place: the oscilla
frequency ofS2 is exactly one-half of the oscillation fre
quency ofS1 ~regime 2!. Hence, one observes aperiod dou-
bling ~subharmonic bifurcation! of the limit cycle ~see Fig.
19!. The typical dependenceSl(t) is shown in Fig. 16, line 3.

The time evolution of the stream function and temperat
field during a half of the period is shown in Fig. 20. Th
general evolution of patterns is similar to one shown in F
15, and its physical origin was explained above. Some
tures look similar@e.g., Fig. 15~c! and Fig. 20~e!, Fig. 15~d!
and Fig. 20~h!, Fig. 15~e! and Fig. 20~i!#. However, the vio-

FIG. 16. Oscillations ofSl(t) for the model system~line 1—
Mr 516 000, line 2—M527 500, line 3—M531 200).

FIG. 17. Dependence of the period of oscillationst on M for
characteristic types of oscillations.
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lation of the symmetry~3.1! is obvious during the main par
of the period. In Figs. 20~k! and 20~l! the motion in the
second layer is dominated by one strong vortex. In Fi
20~a!, 20~m!, and 20~n! a one-vortex structure is observed
the third layer. Thus, the transition from regime 1 to regim
2 is connected with the competition of one- and two-vort
structures in the middle layer.

Comparing~a! and ~n! in Fig. 20 one can see that

c i~x,y,t1t/2!52c i~x,y,t !,
~3.3!

FIG. 18. Oscillations of vorticity for the whole period near th
right corner on the upper interface~line 1! and lower interface~line
2!; M527 500.

FIG. 19. Phase trajectory of the periodic motion after the per
doubling bifurcation~regime 2,M531 200).
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FIG. 20. Streamlines~a!–~n! for the periodic oscillatory motion atM531 200 for the half of the period.
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Ti~x,y,t1t/2!5Ti~2x,y,t !.

After the period doubling bifurcation, with the increase inM
the period of oscillations decreases. For larger values oM
the periodicity of the motion is destroyed; the phase traj
tory is not closed~regime 3, see Fig. 21!.
-

For M.32 000 a new periodic regime is established~re-
gime 4!. The oscillations are strongly nonsinusoidal from t
very beginning~see Fig. 22!. The amplitude increases an
the period decreases with the increase in the parameteM
~see Fig. 17, line 4!. These oscillations satisfy the same sym
metry property~3.3! as ones for regime 2~see Fig. 23!, but
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the evolution of streamlines and isotherms is completely
ferent~see Fig. 24!. The four-vortex structures are absent;
a rule, there is only one main vortex in each layer. Dur
one-half of the period, the vortex moves from the left to t
right, then it is reflected by the lateral boundary and start
move in the opposite direction. Recall that the pictures (a1),
(a2) and (h1), (h2) are connected by the transformation~3.3!.
From the physical point of view, the transitions observ
may be considered as a result of a competition between
instability modes: the ‘‘symmetric’’ mode satisfying cond
tion ~3.3!, which leads to the development of regime 1, a
the ‘‘asymmetric’’ mode leading to regime 4. In infinite lay
ers, these modes would correspond to different values of
wave number. The nonlinear interaction of both modes g
erates more complicated regimes 2 and 3 which in so
sense can be considered as a ‘‘superposition’’ of regime
and 4. ForM.49 960 oscillations become unstable, and
steady motion satisfying symmetry condition~3.1! ~regime
5! is established.

Let us consider now the case of the pure buoyancy c
vection ~see Fig. 14! formerly studied by Simanovskii@29#.
Obviously, the ratios of the ‘‘local’’ Rayleigh numbers are

FIG. 21. Fragment of the phase trajectory of a nonperiodic m
tion ~regime 3,M532 000).

FIG. 22. Oscillations ofSl (t) ~line 1—M532 350, line 2—M
547 500).
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R2

R3
50.5,

R1

R3
50.25.

Thus, the convection motion arises first of all in the upp
layer ~see Fig. 25!; Gc.5. When the Grashof number i
increased, the convection develops also in the middle la
and in the lower layer~see Fig. 26!. The motions satisfy the
symmetry conditions~3.1!.

In the case where both thermocapillary and buoyan
mechanisms are present, it turns out that regime 4 is
preferred form of the motion. For instance, this oscillato
regime is observed forG515 000,M550 000~see Fig. 14!.
Let us remember that for values of parametersG515 000,
M50 and G50, M550 000 we obtained stationary mo
tions. Another regime of oscillations which does not satis
condition~3.3! was observed forG515 000,M516 000~see
Fig. 27!.

IV. COMBINED ACTION OF THERMOCAPILLARY AND
ANTICONVECTIVE MECHANISMS OF INSTABILITY

In the preceding section we considered several variant
the interaction between buoyancy and thermocapillary in
bility mechanisms acting byheating from below. If the sys-
tem is heated from above, the usual Rayleigh instability
mechanism is impossible, while the thermocapillary conv
tion may appear. The thermocapillary instability mechani
may interact with the anticonvection formerly studied
@6–8#.

We consider the model system with the following set
parameters:h50.2, n51, k50.1, x50.1, b50.01, h*
50.04, n* 51, k* 50.1, x* 50.07, b* 50.01, a51, L
52.5, a5a* 51, P51. It means that the heat expansio
coefficient of the upper layer is much smaller than the h
expansion coefficient of the middle layer, and the therm
diffusivity of the middle layer is much higher than the the
mal diffusivity of the upper one. This choice is based on t
fact that this system displays an anticonvective instabi
when heated from above@29#.

Let us explain the physical mechanism responsible for
anticonvective instability mode. Let a warm element of t
third fluid move down towards the upper interface. Owing

-
FIG. 23. Phase trajectory of the periodic motion~regime 4,M

547 500).



6684 PRE 59ALEXANDER A. NEPOMNYASHCHY AND ILYA B. SIMANOVSKII
FIG. 24. Streamlines~a1!–~h1! and isotherms~a2!–~h2! for the periodic oscillatory motion atM547 500.
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the low thermal diffusivity of the upper layer (x!1, x*
!1) the element temperature remains higher than that o
‘‘neighbors’’ for a long time. Since the heat expansion co
ficient of the upper fluid is small (b!1, b* !1) the Archi-
median force does not act on this element, so that it
approach the interface. The change in the temperature
ts
-

n
ld

on the upper interface caused by the warm element lead
the appearance of temperature gradients directed along
interface to the spot under the element. These gradients c
the advective motion along the interface. Since the heat
pansion coefficient of the middle layer is large, an ascend
convective flow there arises. Because the thermal diffusiv
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of the middle fluid is high, this flow does not destroy th
warm spot. At the same time, the ascending motion in
middle layer supports a descending flow in the upper fluid
means of viscous stresses. Thus, a steady convective flo
generated.

For the system under consideration, conditions for the
pearance of the anticonvection~asGÞ0, M50) are satisfied
on the upper interface. As usual~see@20#!, the intensity of
the convection is maximal in the fluid situated below t
active interface.

The thermocapillary convection (MÞ0, G50) also ap-
pears near the upper interface. Unlike the case of the a
convection, the intensities of the thermocapillary convect
in both upper and middle layers are of the same order@see
Fig. 28~a!#. The directions of rotation coincide for anticon
vective and thermocapillary motions. When both mec
nisms of instability act simultaneously, the intensity of t
motion increases in both fluids, but its increase in the mid
layer is much stronger@see Fig. 28~b!#. With the change ina
~all the other parameters being the same!, the role of two
interfaces in the generation of the thermocapillary conv
tion also changes. If 1,a,180 thermocapillary convection
is generated by both interfaces, and ifa.180 the motion
takes place mainly near the lower interface. Inclusion
buoyancy convection (GÞ0, MÞ0, a.180) leads to indi-
rect interaction of instability mechanisms. The most inte
sive motion takes place in the middle layer near the low
interface@see Fig. 28~c!#.

FIG. 25. Streamlines~a! and isotherms~b! for G56000,
M50.

FIG. 26. Streamlines~a! and isotherms~b! for G528 000,
M50.
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V. CONCLUSIONS

We have considered the nonlinear regimes of thermoc
illary and buoyancy convection and the combined action
several types of instabilities in three-layer fluid systems. T
steady and oscillatory motions with different spatial stru
tures and transitions between them were studied.

It was shown that for thermocapillary convection oscill
tions are restricted by the Marangoni number both from
low ~by the mechanical equilibrium state! and from above
~by the steady state!. The oscillations are subject to a trans
tion between spatially symmetric and asymmetric form
This transition is associated with a period doubling bifurc
tion. With the increase in the Marangoni number the per
of oscillations decreases except for bifurcation points. In
finite interval of the Marangoni number nonperiodic oscill
tions are observed. Periodic oscillations take place both
low and above this interval.

We have also investigated the influence of the lateral te
perature boundary conditions on the convective motions.
found that this influence is rather weak; generally, the int
sity of the motion is lower in the case of heat-insulat
boundaries than in the case of well-conducting boundar
Different variants of direct and indirect interactions of inst
bility mechanisms are considered. In the simplest ca
where only one of the interfaces plays an active role in
generation of the thermocapillary convection, the combin
action of two instability mechanisms increases the inten
of motion. This effect is possible in one-layer and two-lay
systems as well. However, for three-layer systems this in
action may be more delicate. In the case where there
several competing structures the interaction of differ
mechanisms may strongly influence the selection of
stable patterns. It was shown that the ‘‘indirect’’ influence
the thermocapillary effects on the motions generated ma
by buoyancy convection supports one particular struct
over the other possible ones~for instance, structureA in Sec.
III B !. Similarly, buoyancy selects regime 4 among other
cillatory regimes of Marangoni convection~Sec. III C!. We
also found that the combined action of both instabil
mechanisms may produce a new regime of the motion~like
that shown in Fig. 23! which cannot be generated by any so
mechanism. Classification of different types of interacti
between Rayleigh and Marangoni convection mechanism

FIG. 27. Phase trajectory of the periodic motion (G515 000,
M516 000).
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FIG. 28. ~a! Streamlines for the model system (M512 000, G50, a51); ~b! streamlines for the model system (M512 000, G
54500,a51); ~c! streamlines for the model system (M525 000;G54500; a5200).
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suggested. All six types of interaction according to our cl
sification are found.
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